|
新聞詳情
光聲納米探針被應(yīng)用于心血管疾病診斷 2020年9月06日,北京大學(xué)基礎(chǔ)醫(yī)學(xué)院鄭樂民教授團隊在Advanced Materials期刊上在線發(fā)表了題為 Non-invasive nanoprobe for in vivo photoacoustic imaging of vulnerable atherosclerotic plaque 的研究論文。該研究設(shè)計并合成了一種高靈敏的光聲納米探針,在分子水平實現(xiàn)了對AS不穩(wěn)定斑塊非侵入性在體光聲成像 (photoacoustic imaging),為心血管疾病診斷技術(shù)的發(fā)展提供了一種新方法。 進一步地,OPN Ab/Ti3C2/ICG納米探針通過靜脈注射到apoE?/?AS模型小鼠體內(nèi),在富含不穩(wěn)定斑塊的主動脈弓部位呈現(xiàn)出了明顯的光聲信號。這些結(jié)果表明,OPN Ab/Ti3C2/ICG納米探針可在分子水平識別AS不穩(wěn)定斑塊的主要成分,為非侵入性可視化區(qū)分AS不穩(wěn)定斑塊提供了新的思路。 圖. OPN Ab/Ti3C2/ICG納米探針的合成以及對不穩(wěn)定斑塊的靶向識別據(jù)悉,北京大學(xué)工學(xué)院博士后葛曉曉和北京大學(xué)基礎(chǔ)醫(yī)學(xué)院心血管研究所博士研究生崔宏圖為論文的共同第一作者,鄭樂民教授為通訊作者。本論文同時也得到了北京大學(xué)工學(xué)院郭少軍研究員的幫助。 鄭樂民教授團隊主要致力于通過生物代謝質(zhì)譜等技術(shù)來研究心血管相關(guān)疾病的病生理機制,并探究高靈敏的適用于心腦血管疾病的生物醫(yī)學(xué)診斷新方法。該團隊在2016年通過光學(xué)相干斷層掃描技術(shù)發(fā)現(xiàn),TMAO水平與AS斑塊穩(wěn)定性密切相關(guān)【4】。并首次報道,TMAO在老年人中的水平明顯高于年輕;并在快速老化小鼠模型中證實,TMAO可促進小鼠血管老化,損壞血管舒縮功能;TMAO可增加小鼠體內(nèi)衰老細胞的數(shù)量(主要是神經(jīng)元),引起了小鼠海馬CA3區(qū)域中的神經(jīng)元衰老,并損傷海馬CA1區(qū)域的超微結(jié)構(gòu)。 另外,TMAO處理可增加突觸損傷,并通過抑制mTOR信號通路,降低突觸可塑性相關(guān)蛋白的表達水平,從而引起并加劇衰老相關(guān)的認知障礙。相關(guān)結(jié)果發(fā)表在 Aging Cell (2018) 【5】和 Free Radical Biology & Medicine (2018)【6】。此外,該研究團隊在2020年首次報道新腸道菌群代謝物TMAVA在NAFLD的能量穩(wěn)態(tài)中起重要作用【7】。同時,該團隊利用納米材料的多樣性,發(fā)展了一系列新型的分子探針,實現(xiàn)了在細胞水平對心血管相關(guān)疾病細胞的高靈敏成像【8-10】(Advanced Functional Materials, 2017; ACS APPL MATER INTERFACES, 2017; Nanoscale, 2019)。 參考文獻 1. D. Zhao, J. Liu, M. Wang, X. Zhang, M. Zhou, Epidemiology of cardiovascular disease in China: current features and implications. Nat. Rev. Cardiol. 2019, 16, 203 2. K. Moore, I. Tabas. Macrophages in the pathogenesis of atherosclerosis. Cell. 2011, 145, 341 3. R. Qiao, H. Qiao, Y. Zhang, Y. Wang, C. Chi, J. Tian, L. Zhang, F Cao, M Gao. Molecular Imaging of Vulnerable Atherosclerotic Plaques in Vivo with Osteopontin-Specific Upconversion Nanoprobes. ACS Nano. 2017, 11, 1816 4. Q. Fu, M. Zhao, D. Wang, H. Hu, C. Guo, W. Chen, Q. Li, L. Zheng* and B. Chen*. Coronary Plaque Characterization Assessed by Optical Coherence Tomographyand Plasma Trimethylamine-N-oxide Levels in Patients With Coronary ArteryDisease. Am J Cardiol. 2016, 118, 1311 5. D. Li, Y. Ke, R. Zhan, C. Liu, M. Zhao, A. Zeng, X. Shi, L. Ji, S. Cheng, B. Pan, L. Zheng* and H. Hong*. Trimethylamine-N-oxide promotes brain aging andcognitive impairment in mice. Aging cell. 2018, e12768 6. Y. Ke, D. Li, M. Zhao, C. Liu, J. Liu, A. Zeng, X. Shi, S. Cheng, B. Pan, L. Zheng* and H. Hong*. Gut flora-dependent metabolite Trimethylamine-N-oxideaccelerates endothelial cell senescence and vascular aging through oxidativestress. Free Radical Biol Med. 2018, 116, 88. 7. M. Zhao, L. Zhao, X. Xiong, Y. He, W. Huang, Z. Liu, L. Ji, B. Pan, X. Guo, L. Wang, S. Chen, M. Xu, H. Yang, Y. Yin, M. Garcia-Barrio, Y.E. Chen, X. Meng, L. Zheng*. TMAVA, a Metabolite of Intestinal Microbes, Is Increased in Plasma From Patients With Liver Steatosis, Inhibits γ-Butyrobetaine Hydroxylase, and Exacerbates Fatty Liver in Mice. Gastroenterology. 2020, 158, 2266 8. H. Zhang, X. Wang, Q. Liao, Z. Xu, H. Li, *L. Zheng, *H. Fu. Embedding Perovskite Nanocrystals into a Polymer Matrix for Tunable Luminescence Probes in Cell Imaging. Adv. Funct. Mater. 2017, 27, 1604382 9. C. Feng, *Z. Xu, X. Wang, H. Yang, *L. Zheng, *H. Fu. Organic-nanowire-SiO2 core-shell microlasers with highly polarized and narrow emissions for biological imaging. ACS Appl Mater Interfaces. 2017, 9, 7385. 10. Man Z, Lv Z, *Xu Z, Cui H, Liao Q, Zheng Lemin*, Jin X, He Q, Fu H*. Organic nanoparticles with ultrahigh stimulated emission depletion efficiency for low-power STED nanoscopy. Nanoscale. 2019;11(27):12990-12996 |